Preface

Thanks for using SP300 series Solar Pump Inverter.

This manual tells you how to use it correctly. Please read this manual carefully and fully, understanding the safety requirement and cautions before using (installation, operation, maintain, checking, and etc...).

Inside the manual includes all the : required parameter settings and program features of the SP300 solar pump inverter.

The main features for SP300 series solar pump inverters:

- 1- Hybrid function to accept AC and DC at same time
- 2- Wide input voltage range:

220V model: DC 150-450V (DC 80-450V for 110V motor)

380V model: DC 250-900VSP300

- 3- Easy drive for 220V single phase pump
- 4- Stable running and low frequency fluctuation
- 5- All-round protection and inverter no burn
- 6- Auto start and stop function

7- Adapt to various pumps,like AM,PMSM,submersible pump,surface pump etc

.

Content

Chapter 1	Before use	
Chapter 2	Solar pumping system introduction03	
Chapter 3	SP300 Solar pump inverter introduction04	
3.1 S	P300 series model and nameplate05	
3.2 S	P300 series model specification	
3.3 S	P300 seriesSP300 technical specification07	
3. 4 S	P300 seriesSP300 dimensions	.08
Chapter 4	Operation keypad description10	
Chapter 5	SP300Terminals and wiring and operation11	
5.1 Te	erminals11	
5.2 V	Viring	
5.3 C	Operation15	

Charter 6	Simple parameter list	16	
Chapter 7	Explanation of important parameters	33	
Chapter 8	Monitoring parameters of Solar Pump Inverter	38	
Chapter 9	Trouble-shooting and Solutions	39	
Appendix	SP300Instructions for driving 1 Phase 220V Pump	•••••	43
Appendix	2 Supplementary instructionsSP300 for drive PMSM pumps		.44
SP300			

Chapter 1.Before use

CAUTION: Properly check the delivery before installation. Never install the drive when you find it damaged or lack a component. Incomplete or defective installation might cause accidents.

CAUTION: To ensure effective cooling, the drive must be installed vertically with at least 10 cm space above and below the casing.

CAUTION: Do not let the drilling chips fall into the drive fin or fan during installation. This might affect the heat dissipation.

WARNING: The connection of the drive must be carried out by qualified personnel only. Unqualified handling might lead to shock, burn, or death.

WARNING: Please double-check that input power has been disconnected before connecting the device, otherwise electrocution or fire can be caused.

WARNING: The earth terminal must be reliably grounded, otherwise touching the drive shell might lead to a shock.

WARNING: Selection of PV module type, motor load and drive must be adequate, or the equipment might get damaged.

WARNING: Grounding of this electrical equipment is mandatory. Never run the pump system when the ground wire is not connected to proper ground. Ignoring this instruction can lead to electrocution.

WARNING: Do not modify the connection while the system is connected to power, or touching any part of it might cause electrocution

CAUTION: Adjust partial control parameters according to the steps indicated by the manual before the first operation. Do not change the control parameters of the drive by random, or it might damage the equipment.

CAUTION: The heat sink gets hot during operation. Do not touch it until it has cooled down again, or you might get burned.

CAUTION: At altitudes of more than 1,000 m above sea level, the drive should be derated for use. Output current should be derated by 10% for every 1,500 m increment of altitude.

CAUTION: Never run the pump when it is not fully submerged in water. When the pump is installed the correct running direction can be determined by measuring the flow rates.

Chapter 2. Solar pumping system introduction

Solar pumping systems can be applied to all forms of daily use, water pumping for drinking water supply for remote villages and farms without connection to the water grid, for agricultural use such as livestock watering, agricultural irrigation, forestry irrigation, pond management, desert control, and industrial use such as waste water treatment etc.

The system is composed of a PV arrays, a pump and a solar pump inverter. Based on the design philosophy that it is more efficient to store water rather than electricity, there is no energy storing device such as storage battery in the system. The system is prepared to be combined with a elevated water storage, e.g. water tower or an uphill tank installation.

The PV generator, an aggregation of PV modules connected in series and in parallel, absorbs solar irradiation and converts it into electrical energy, providing power for the whole system. The pump drive controls and adjusts the system operation and converts the DC produced by the PV module into AC to drive the pump, and adjusts the output frequency in real-time according to the variation of sunlight intensity to realize the maximum power point tracking (MPPT).

According to the actual system demand and installation condition, different types of pumps such as centrifugal pump, axial flow pump, mixed flow pump or deep well pump can be used.

Solar pump system: It includes solar panels arrays +solar pump inverter +AC pumps.

System constitute diagram

Chapter 3. Solar pump inverter introduction

The SP300 series solar pump inverter is a low voltage AC drive from 0.4kw to 220KW above rating designed to operate with energy drawn from solar panel or photovoltaic cells (PV).

The inverter is customized to operate in dual supply mode, so the grid connected supply is used in the absence of energy from PV cells. This drive functions with the latest in technology maximum power point tracking (MPPT) algorithm to derive maximum power from the PV cells at any instant.

Solar Pump Inverter Features:

- ✓ Maximum power point tracking (MPPT) with fast response speed and stable operation efficiency> 99%
- ✓ Suits for most 3 phase AC pumps and AC PMSM high efficiency pumps
- The working voltage of solar panel can set by manual or MPPT automatically tracking
- \checkmark Hybrid function and compatible with AC and DC power input at same time
- ✓ Built in automatic sleep-wake up function,
- ✓ Dry run (under load) protection
- ✓ Motor maximum current protection
- ✓ Low input power protection
- \checkmark Lowest stop frequency protection
- ✓ The PQ (power/flow) performance curve enables calculating the flow output from the pump
- Digital control for fully automatic operation, data storage and protective functions
- ✓ Intelligent power module (IPM) for the main circuit
- ✓ LED display operating panel and support remote control
- \checkmark Low water probe sensor, and water level control function
- \checkmark Strong lightning protection
- ✓ Ambient temperature for using: -10 to +50 $^{\circ}$ C.
- ✓ Clock relay card for timing stop and stop control
- ✓ LCD keypad as optional
- ✓ Input VOC auto-detect function

SP300

3.1 SP300 series solar pump inverter

SP300 model description:					
SP 300 -	4T - 0	11G - M			
		1 1	L: me	tal type	S: IP54 type
			1	M : Mini/eco	nomictype
Solar pump inverter			Adapto	able Pump(K	(W)
		Mark	2P2G	011G	
		Motor	2.2kw	11	
			Voltage	Class	
	15: 80VDC 1	o 450VDC inp	ut and 110	VAC output	
300 SERIES	2S: 250 to 45	50VDC or 220	√ input an	d 0 to 256VA	AC output
	4T: 350 to 80	00/900VDC /3	PH 380-480	OVAC input,3	PH 0-480VAC output
	5T: 350 to 10	00VDC or 3 Pl	1 380-552\	/AC input,3 P	PH 0-552V output
				SP 3	nn
SP300-XX-M SP300-X	x-s	SP300-X	X-L		
: 5000			Canada		
sad			88		
				8888	
	NG sheek				
CD	aladon nedaln to sillar af				1200 Lane
		Managa	▲		A
1.5-2.2KW 1.5-22K	W	1.5-7.5K	W	1.3	5-560KW
·····				i	

SP300 solar pump inverter voltage range

Model	Applicable for	Input DC	Over voltage	Under voltage	Suggest	Suggest
Model	pumps	voltage	point	point	Vmp	Voc
SP300-2S	For 220V AC	150V - 450V	450V	100V	310VDC	380VDC
SP300-4T	For 380V/480V AC	350V - 900V	8007/9007	200V	520VDC	650VDC

3.2 Models and specification

SN	Model No.	Rate current	Output voltage (3PH AC)	Applicable for pumps	External of drive size(mm)H*W*D	MPPT voltage (VDC)	Weight (kg)
1	SP200 25 185C M	7 4	0.2541/40		151*100*107	240 to 275	1.4
	3F300-23-1F3G-101	74	0-230VAC	1.36.00	131 100 127	200 10 37 3	1.4
2	SP300-2S-2P2G-M	10A	0-256VAC	2.2KW	151*100*127	260 to 375	1.4
	SP300-XX-M 4T series: Input 350 to 800V/900V DC or 380 to 480V AC, VOC 620V DC						
1	SP300-4T-1P5G-M	3.7A	0-480VAC	1.5KW	151*100*127	486 to 750	1.4
2	SP300-4T-2P2G-M	5A	0-480VAC	2.2KW	151*100*127	486 to 750	1.4
	SP300	2S series : Inpu	ut 150 to 450∨ D	C or 200 to 240)V AC, VOC 350	VDC	
1	SP300-2S-1P5G	7A	0-256VAC	1.5KW	185*118*153.8	260 to 375	2
2	SP300-2S-2P2G	10A	0-256VAC	2.2KW	185*118*153.8	260 to 375	2.5
3	SP300-2S-004G	16A	0-256VAC	4.0KW	247*160*175	260 to 375	4.3
	SP300 4T	series : Input 3	50 to 800V/900\	/ DC or 380 to	480V AC, VOC 6	20V DC	

SP300 series solar pump inverter operation manual (V11.2)

1	SP300-4T-2P2G	5A	0-480VAC	2.2KW	185*118*153.8	486 to 750	3
2	SP300-4T-004G	10A	0-480VAC	4KW	185*118*153.8	486 to 750	3
3	SP300-4T-5P5G	13A	0-480VAC	5.5KW	247*160*175	486 to 750	4.2
4	SP300-4T-7P5G	17A	0-480VAC	7.5KW	247*160*175	486 to 750	4.3
5	SP300-4T-011G	25A	0-480VAC	11KW	247*160*175	486 to 750	4.5
6	SP300-4T-015G	30A	0-480VAC	15KW	320*220*197.3	486 to 750	7.3
7	SP300-4T-018G	37A	0-480VAC	18KW	320*220*197.3	486 to 750	7.5
8	SP300-4T-022G	45A	0-480VAC	22KW	415*230*205	486 to 750	12
9	SP300-4T-030G	60A	0-480VAC	30KW	480*260*215	486 to 750	17
10	SP300-4T-037G	75A	0-480VAC	37KW	480*260*215	486 to 750	17.5
11	SP300-4T-045G	91A	0-480VAC	45KW	575*320*310	486 to 750	35
12	SP300-4T-055G	110A	0-480VAC	55KW	575*320*310	486 to 750	36
13	SP300-4T-075G	150A	0-480VAC	75KW	620*380*310	486 to 750	45
14	SP300-4T-090G	180A	0-480VAC	93KW	620*380*310	486 to 750	51
15	SP300-4T-110G	220A	0-480VAC	110KW	620*380*310	486 to 750	54
16	SP300-4T-132G	250A	0-480VAC	132KW	620*380*310	486 to 750	55
17	SP300-4T-160G	310A	0-480VAC	160KW	817*500*348	486 to 750	94
18	SP300-4T-185G	340A	0-480VAC	185KW	817*500*348	486 to 750	96
19	SP300-4T-200G	380A	0-480VAC	200KW	817*500*348	486 to 750	98
20	SP300-4T-220G	415A	0-480VAC	220KW	817*500*348	486 to 750	98
	SP300->	(X-L 2S series: Ir	nput 150-450V D	C or 200 to 240	OV AC, VOC 350	/ DC	
1	SP300-2S-1P5G-L	7A	0-256VAC	1.5KW	298*165*201	260 to 375	3
2	SP300-2S-2P2G-L	10A	0-256VAC	2.2KW	298*165*201	260 to 375	3
3	SP300-2S-004G-L	16A	0-256VAC	4.0KW	310*205*225	260 to 375	4.5
	SP300-XX-L SP3	8004T series : Inp	out 350 to 800V/	900V DC or 38	0 to 480V AC, VC	DC 620V DC	
1	SP300-4T-2P2G-L	5A	0-480VAC	2.2KW	298*165*201	486 to 750	3
2	SP300-4T-004G-L	10A	0-480VAC	4KW	298*165*201	486 to 750	3
3	SP300-4T-5P5G-L	13A	0-480VAC	5.5KW	310*205*225	486 to 750	4.5
4	SP300-4T-7P5G-L	17A	0-480VAC	7.5KW	310*205*225	486 to 750	4.5
	SP300-XX-S	2S series: Inp	ut 150-450V DC	or 200 to 240V	AC, VOC 350V [DCSP300	
1	SP300-2S-1P5G-S	7A	0-256VAC	1.5KW	245**160*180	260 to 375	5
2	SP300-2S-2P2G-S	10A	0-256VAC	2.2KW	245**160*180	260 to 375	5
3	SP300-2S-004G-S	16A	0-256VAC	4.0KW	320*215*190	260 to 375	7.5
	SP300-XX-S	4T series : Inpu	t 350 to 800V/90	00V DC or 380 1	to 480V AC, VOC	: 620V DC	
1	SP300-4T-2P2G-S	5A	0-480VAC	2.2KW	245**160*180	486 to 750	5
2	SP300-4T-004G-S	10A	0-480VAC	4KW	245**160*180	486 to 750	5
3	SP300-4T-5P5G-S	13A	0-480VAC	5.5KW	320*215*190	486 to 750	7.5
4	SP300-4T-7P5G-S	17A	0-480VAC	7.5KW	320*215*190	486 to 750	7.5
5	SP300-4T-011G-S	25A	0-480VAC	11KW	320*215*190	486 to 750	7.5
6	SP300-4T-015G-S	30A	0-480VAC	15KW	410*275*200	486 to 750	13
7	SP300-4T-018G-S	37A	0-480VAC	18KW	410*275*200	486 to 750	13
8	SP300-4T-022G-S	45A	0-480VAC	22KW	410*275*200	486 to 750	13

3.3 SP300 series solar pump inverter technical specification

	Solar pump inverter mode only when PE-00=1&2
Recommended MPPT	Vmp 131 to 350 VDC for 1S model (80V to 450VDC input, 110/220VAC output)
voltage range	Vmp 260 to 355VDC for 2S model (250V to 450VDC input,0-240VAC output)
	Vmp 486 to 650 VDC for 4T model (350V to 800VDC input, 0- 480VAC output)
Recommended input	Voc 180(VDC), Vmpp 155(VDC) for 1S model or 110V AC pumps
Voc and Vmpp voltage	Voc 380(VDC), Vmpp 310(VDC) for 2S model or 220V AC pumps
	Voc 650(VDC), Vmpp 520(VDC) for 4T model or 380V AC pumps
Motor type	Adapt for permanent magnet synchronous motor(PMSM) and asynchronous
	motor pumps, submersible and surface pumps etc
Rated output voltage	Output under rated condition: 3 phase, $0\sim$ input voltage, inaccuracy<5%
Output frequency	0~maximum frequency 600Hz
MPPT efficiency	99.7%
Overload capacity	150% rated current for 60S, 180% rated current for 2S
Solar pump control	MPPT and CVT (constant voltage tracking), time control function, sand clean
special performance	function, dry run protection, low frequency stop protection, minimum power
	input, motor maximum current protection, flow calculating, energy
	generated calculating and water tank level detected
	Phase loss protection, phase short circuit protection, ground to phase circuit
Protection function	protection, input and output short circuit protection. Stall protection, lightning
	protection
Protection degree	IP20 for SP300-XX-M/L series, IP54 for SP300-XX-S series .All Air force cooling
Running mode	MPPT or CVT
Enhanced version of	Design based on vector control AC drive, more specification please refer to
AC drive	PH100 vector control drive operation manual
Certification	CE and IEC: (EN 61000-3-11:2000 EN 61000-3-12:2011)
	EN 62109-1/IEC 62109-1:2010 EN 61800-5-1:2007+A1:2017
	EN IEC61800-3:2008(C3)/IEC 61800-3:2007(C2)
Storage temperature	-30 ~+60℃
Temperature humidity	-10 \sim + 50 °C, derating above 40 °C, maximum temperature 60 °C (no-load operation)5% to 95% RH (non-condensing)
Install place	altitude ≤ 1000m,above 1000m down the rated amount, each increase of 100m down the rated mount of 1%;no condensation, ice ,rain, snow, hail; solar radiation below 700W/ ㎡, air pressure 70-106 KPa
	PID control, speed track, power off restart, jump frequency, upper/lower
Standard functions	frequency limit control, program operation, multi-speed, RS485, analog output,
	frequency impulse output

3.4 SP300 series solar pump inverter dimensions

3.4.1 SP300-XX- M mini model

Power	Н	H1	W	W1	D	DI	Hole
1.5-2.2KW	151	142	100	88	127	130	4.5

3.4.2 SP300 general model

	D1 D						0 - Ŧ	
Model	Hole I	ocation	(mm)	Inve	rter dime (mm)	ension	Hole D (mm)	N.W
	W1	H1		Н	W	D		(kg)
Single phase 220V input, 50/60Hz								
SP300-2S-0P7G								
SP300-2S-1P5G	106.5	175	/	185	118	153.8	4.5	2.1
SP300-2S-2P2G								
SP300-2S-004G	148	235.5	/	247	160	175	5.5	4
	3 phc	ise 380V	input,	50/60Hz	7			
SP300-4T-0P7G								
SP300-4T-1P5G	106.5	175	,	185	118	153.8	15	21
SP300-4T-2P2G	100.0	175			110	100.0	4.5	2.1
SP300-4T-004G								
SP300-4T-5P5G								
SP300-4T-7P5G	148	235.5	/	247	160	175	5.5	4.5
SP300-4T-011G								
SP300-4T-015G								
SP300-4T-018G	205	305	/	320	220	197.3	6.5	7
SP300-4T-022G	1							

SP300-4T-030G	200	465	/	480	260	215	8	17
SP300-41-037G								
SP300-4T-045G	180	550	,	575	320	310	8	36
SP300-4T-055G			,				-	
SP300-4T-075G								
SP300-4T-090G	240	595	/	620	380	310	10	51
SP300-4T-110G								
SP300-4T-132G								
SP300-4T-160G								
SP300-4T-185G	380	800	,	825	500	350	do 1 1	04
SP300-4T-200G	300	800		025	500	550	φΠ	70
SP300-4T-220G								
SP300-4T-250G								
SP300-4T-280G	520	950	,	075	710	240	d=14	120
SP300-4T-315G] 520	030		0/5	/10	300	φ14	130
SP300-4T-350G								

3.4.3 SP300-XX-S IP54 series

Models	w	Н	D	H2	W1	H1	INSTALLATION Hole
SP300-2S-1P5G-S	100	245	100	224	120	220	10
SP300-2S-2P2G-S	160	245	180	224	120	229	фб
SP300-2S-004G-S	215	320	190	224	120	229	ф6
SP300-4T-2P2G-S	160	245	100	224	120	220	A 6
SP300-4T-004G-S	100	245	180	224	120	229	φσ
SP300-4T-5P5G-S							
SP300-4T-7P5G-S	215	320	190	296	160	302	ф8
SP300-4T-011G-S							
SP300-4T-015G-S							
SP300-4T-018G-S	275	410	200	384	200	392	ф8
SP300-4T-022G-S							

Chapter4. Operation keypad description

Key symbol	Name	Function description
PRG ESC	Menu key	Enter menu
	Confirm key	Enter into menu or confirm the setting value
5	UP increase key	Data and function code increase
	Down decrease key	Data and function code reduce
	SHIFT key	In the monitor status, press this key can select: output frequency/voltage/current,DC bus voltage
RUN	Running key	Use to run motor in keyboard control mode
² M.F.K	Multiple function	The function of MF.K can be set P7.01 setting.
JOG	key	Default setting is no function to program
STOP	Stop and resat	In running status, this key can use to stop motor
RESET		running (P0-02). Reset malfunction in alarm mode.
SPI	Solar Pump Inverter	No function for program

Symbol	When Indicator light on
Hz	Output running frequency
A	Output running current
V	First show input DC bus voltage then show output running voltage
RUN	Running mode
DIR	Inverter runs in keypad control mode with P0-02=0 setting
LOCAL	Inverter runs in terminal control mode, with P0-02=1 setting
TRIP	Fault indicator, inverter will be trip when any alarm happens

Chapter 5. SP300Terminals and wiring and operation

Noted: 1:Connect DC + and - to R-S-T, connect any 2 wire of it and no distinguish the direction 2: PB and P/P+ connect for braking resistor, P1 and P/P+ connect for DC reactor

5.1.2 Control circuit terminals and explanation

Noted:In SP300-XX-M mini model and use X to replace D,like X1=D1,X2=D2 etc

Туре	Symbol	Name of terminals	Specification and explanation
Communication	485A	485+	RS485 communication port,compatible
Communication	485B	485-	with Modbus
	DI1~DI4	Digital input	Sink or source input option set by jumper, input resistance is 2.5K,optocoupler isolation input, jumper J9
		Digital input or high	General digital input terminal characteristics
	DI5	speed pulse trains	Pulse trains input maximum frequency:
Digital input		input terminals	100KHz
and output	DO1	Digital output 1	Open collector output Maximum drive capability is 50mA
	FM	Digital output 2	Open collector output, maximum drive capability is 50mA, Can be selected as a pulse train output, up to 100KHz
	All	Analog input 1	Input voltage range: 0V ~ 10V Input resistance: 22K
Analog input	AI2	Analog input 2	Input voltage range: 0 ~ 10V or 4 ~ 20mA Input resistance: 22K, jumper J8
and output	AO1	Analog output 1	Output range: 0 ~ 10V or 0 ~ 20mA,select by jumper J5
	AO2	Analog output 2	Output range: 0 ~ 10V or 0 ~ 20mA,select by jumperJ5
	10V	Analog power supply	Output current: 20mA; Accuracy: 2%
power supply	GND	Analog Ground	Analog reference ground
ground	24V	User power supply	Accuracy: ±15%
	СОМ	Digital ground	Digital reference ground
Status relay	Т1/А,Т1/В, T1/C	Relay 1	TA/TB normal close、TA/TC normal open; Driving capability: 25VAc,3A,COSØ=0.4; 30Vdc,1A
output	T2/A,T2/B, T2/C	Relay 2	TA/TB normal close、TA/TC normal open; Driving capability: 25VAc,3A,COSØ=0.4; 30Vdc,1A

5.2 Wiring diagram

solar pump wiring 1, digital switch for water tank fulling

Wiring 2 for water tank fulling for analog type water sensor

Wiring explanation for water and dry run sensor:

- (1) Connect 2 wires of float ball sensor to DI4 and COM for water tank level fulling detecting, and set P4-03=51 (float ball NO relay alarm). When water level reached to sensor detecting, the normal open (NO) relay point will be activated, invereter will stop pumping, and sent a A.FuL alarm.
- (2) Connect 2 wires of sensor of **dry run sensor** of well to DI5 and GND, and set P4-04=52 (dry run NC relay alarm). It will sent alarm A.LLd and stop pumping when lack of water in well for dry run protection.
- (3) It is also enable to connect analog (0-10VDC, or 0/4-20mA) water level sensor for water tank leveling detecting:
- (4) Connecting 2 wires of 0/4-20mA analog sensor to Al1 and 24VDC terminals of inverter, and short connect COM and GND terminals for constructing a loop circuit.

5.3 Operation instructions and notes

SP300 solar pump inverter operation flow chat

Notes:

A. The total power of solar arrays input should be large than 1.3 to 1.5

times of rated of pumps.and the rated power of inverter must be

large than rated power of pumps.

- B. Set P1-00 to P1-05 motor group parameters for getting better pumps protection
- C. Set dry run function with PE-22 to PE-24 parameters for pumps protection if not enough water in well.
- D. Set lowest stop frequency function for pumps not allow to run in low speed protection with PE-19 to PE-21.
- E. Set pumps over current protection with PE-25 and PE-26.
- F. Set Min power input function to avoid solar pump system working in low power input. (PE-28 to PE-30).
- G. Compatible with both digital and analog signal of transmitter for water tank full detection. (PE-31 to PE-35).
- H. User can get flow, day flow, generating energy and day generating energy information from inverter with PQ curve setting (PE-38 to PE-39), and get monitor form U0-13 to U0-19.
- It must to perform motor auto tuning for PMSM high speed and high efficiency pumps. Regarding for driving PMSM, the motor auto tuning is very important. The user can check parameters of P1-20, after auto tuning if has been modification, if these parameters is not correct for pumps, please modify it according to pumps specification.

Chapter 6. Simple parameter list

Table Symbol Description:

" \checkmark " - indicates that the parameter can be changed in the process of stopping and running.

" \times " - indicates that the parameter can be changed in stop mode, can not be changed during running;

"•" - Indicates that the initial parameters related to the drives model.

Below list all parameters for AC drives, not only for solar pump control but also for motor speed and torque control. Blue and bold words stands for parameters which may relative to solar pump control function.

"*" Factory setting, it is not allow to set by user.

Function code	Name	Setting range	Factory setting	Modifi cation
		P0 Basic function parameters		1
P0-00	G/P model display	1: G type (Heavy duty) 2: P type (pumps, fans load duty)	Per model	•
P0-01	The first motor control mode	 0:VF control 1:Sensorless vector control without PG card feedback 2: Sensor vector control with PG card feedback 3: 2 wires output for 1 phase pump 4: 3 wires output for 1 phase pump (if remove starting capacitor and running capacitor, please select 4. If only remove starting capacitor or difficult to remove starting and running capacitors. Please select 3). 	0	×
P0-02	Command mode	0: Keypad (LED OFF) 1:Terminal command (LED ON) 2: R\$485 communication (LED flash)	0	\checkmark
P0-08	Preset frequency	0.00Hz~Maximum (P0-10)	50.00Hz	\checkmark
P0-09	Running direction	0: the same direction 1: the opposite direction	0	\checkmark
P0-10	Maximum frequency	400.00Hz	50.00Hz	X
P0-11	Upper limit frequency source	0: P0-12 1: Al1 2: Al2 3: Potentiometer of keypad 4: PULSE trains 5: Rs485 communication	0	×

P0-12	Upper limit frequency source	Lower limit frequency P0-14~Maximum frequency P0-10	50.00Hz	~
P0-13	Upper limit frequency offset	0.00Hz~Maximum frequency P0-10	0.00Hz	\checkmark
P0-14	Lower limit frequency	0.00Hz~Maximum frequency P0-12	0.00Hz	\checkmark
P0-15	Carrier frequency	0.5kHz~16.0kHz	Per model	\checkmark
P0-16	Carrier frequency auto adjusting with temperature	0: Not 1: Yes	0	~
P0-17	Acceleration time 1	0.00s~650.00s(P0-19=2) 0.0s~6500.0s(P0-19=1) 0s~65000s(P0-19=0)	Per model	~
P0-18	Deceleration time 1	0.00s~650.00s(P0-19=2) 0.0s~6500.0s(P0-19=1) 0s~65000s(P0-19=0)	Per model	~
PO-19	Unit of acceleration /deceleration time	0: 1s 1: 0.1s 2: 0.01s	1	×
P0-20	The balance factory for 1 phase pump driving (3 phase output)	0.00 ~2.00	1.0	×
P0-21	The offset of auxiliary frequency source when perform superposition	0.00Hz~Maximum frequency F0-10	0.00Hz	\checkmark
P0-22	Frequency resolution	1: 0.1Hz 2: 0.01Hz	2	×
P0-24	Motor parameter group	0: Motor parameters group 1 1: Motor parameters group 2	0	×
P0-26	UP/DOWN of reference	0: Running frequency 1: Set frequency	0	×
	F	P1 Motor parameter setting	1	1
P1-00	Motor type	0:General asynchronous motor 1:Variable frequency asynchronous motor 2. Permanent magnet synchronous motor	0	×
P1-01	Rated power of motor	0.1KW~1000.0KW	Per model	×
P1-02	Rated voltage of motor	1V~2000V	Per model	×

P1-03	Rated current of motor	Inverter power <= $55KW$: $0.01A \sim 655.35A$ Inverter power > $55KW$: $0.1A \sim 6553.5A$	Per model	×
P1-04	Rated frequency of motor	0.01Hz~Maximum frequency	Per model	×
P1-05	Rated speed of motor	1rpm~65535rpm	Per model	×
P1-06	Asyn. Motor Stator resistance	Inverter power <= 55 KW: $0.001\Omega \sim 65.535\Omega$ Inverter power > 55 KW: $0.0001\Omega \sim 6.5535\Omega$	Auto tuning	×
P1-07	Asyn. motor rotor resistance	Inverter power <= 55 KW: $0.001\Omega \sim 65.535\Omega$ Inverter power > 55 KW: $0.0001\Omega \sim 6.5535\Omega$	Auto tuning	×
P1-08	Asyn. motor leakage inductance	Inverter power <= 55KW: 0.01mH~ 655.35mH Inverter power > 55KW: 0.001mH~ 65.535mH	Auto tuning	×
P1-09	Asyn. motor mutual inductance	Inverter power <= 55KW: 0.1mH~6553.5mH Inverter power > 55KW: 0.01mH~655.35mH	Auto tuning	×
P1-10	Asyn. motor no-load current	Inverter power <= 55KW: 0.01A~F1-03 Inverter power > 55KW: 0.1A~F1-03	Auto tuning	×
P1-16	Synchronous motor stator resistance	Inverter power <= $55KW$: $0.001\Omega \sim 65.535\Omega$ Inverter power > $55KW$: $0.0001\Omega \sim 6.5535\Omega$	Auto tuning	×
P1-17	Synchronous motor D-axis inductance	Inverter power <= 55KW0.01mH~655.35mH Inverter power > 55KW : 0.001mH~ 65.535mH	Auto tuning	×
P1-18	Synchronous motor Q axis inductance	Inverter power <= 55KW: 0.01mH~ 655.35mH Inverter power > 55KW: 0.001mH~ 65.535mH	Auto tuning	×
P1-20	Synchronous motor back electromotive force	0.1V~6553.5V	Auto tuning	×
P1-34	Number of pole pairs of rotary transformers	1~65535	1	×
P1-37	Auto tuning mode selection	0: no operation 1: Asynchronous motor still tunes 2: Asynchronous motor complete tuning 11: Synchronous motor tuning with load 12: Synchronous motor with no-load tuning	0	×
		P4 group Input terminals		
P4-00	DI1 terminals function selection	0: no operation 1: Forward running or running command	1	×
P4-01	DI2 terminals function	2: Reverse running REV or forward/reverse	9	×

	selection	running direction selection		
P4-02	DI3 terminals function	(note: when set for 1 or 2 parameter,	53	×
	selection	please reference to P4-11 function		, , , , , , , , , , , , , , , , , , ,
P4-03	DIA terminals function	introduction)	51	\sim
	selection	3: 3 line control mode	01	
		4: Forward Jog (FJOG)	50	
P4-04 	DIS terminals function	5: Reverse Jog (RJOG)	52	×
	selection	6: Terminal UP		
P4-05	Reserve	7: Terminal DOWN	0	\times
P4-06	Reserve	8: Free stop	0	X
P4-07	Reserve	9: Fault reset (RESET)	0	\times
P4-08	Reserve		0	×
P4 00	Posorivo	11: External fault normal open input	0	\sim
F 4-07	Keselve	16: Acceleration/ deceleration selection	0	
		17: Acceleration/ deceleration selection		
		18: Frequency source switch		
		revead		
		20: Running command terminals switch		
		21: A coeleration / deceleration forbidden		
		22: PID pause		
		35: Change PID direction		
		36: External parking terminal 1		
		37: Control command switchover terminal?		
		38: PID integral pause		
		41: Motor selection terminals 1		
		42: Motor selection terminals 2		
		43: PID parameter switchover		
		44: User define fault 1		
		45: User define fault 2		
		46: Speed control /Torque control		
		switchover		
		47: Emergency stop		
		48: External parking terminal 2		
		49: DC braking in deceleration		
		50: current running time res		
		51: Water tank full detect 1/ single point		
		detect		
		52: Water tank full detect 2/ single point		
		detect		
		53: MPPT tracking stop/ solar control mode		
		disable.		

P4-10	DI filter time	0.000s~1.000s	0.010s	\checkmark
P4-11	Terminals command mode	0: Two line control 1 1: Two line control 2 2: 3 line control 1 3: 3 line control 2	0	×
P4-12	Terminals UP/DOWN Change ratio	0.001Hz/s~65.535Hz/s	1.00Hz/ s	\checkmark
P4-34	When AI input is less than minimum setting selection	Units' digit: Al 1 is less than minimum input Set selection 0: Corresponds to the minimum input setting 1:0.0% Ten's digit: A2 is less than minimum input Set selection, as above Hundred's digit: Potentiometer less than Min. Input selection, as above	000	~
P4-35	DI1 Relay time	0.0s~3600.0s	0.0s	×
P4-36	DI2 Relay time	0.0s~3600.0s	0.0s	×
P4-37	DI3 Relay time	0.0s~3600.0s	0.0s	×
		P5 Group Output terminals	1	I
P5-00	FM terminals output mode selection	0: High speed pulse output (FMP) 1: Digital output (FMR)	0	\checkmark
P5-01	FMR output function selection	0: No output 1: Frequency inverter running	0	\checkmark
P5-02	Relay 1 function selection	2: Fault output (Free stop fault)	2	\checkmark
P5-03	Relay 2 function selection	3: FDI1 Frequency level detect output	0	\checkmark
P5-04	DO1 output function selection	5: Zero speed running (no output when	1	\checkmark
P5-05	Extension card DO2 Output selection	 6: Motor overload pre-alarm 7: Inverter overload pre-alarm 12: Cumulative run time arrives 17: Upper limit frequency arrives 18: Lower limit frequency arrives 19: Under voltage status output 38: Alarm output (all faults) 39: Motor over temperature warning 41: Fault output (for free stop failure and under voltage is not output) 	4	~
P5-18	RELAY1 output relay time	0.0s~3600.0s	0.0s	\checkmark
P5-19	RELAY2 output relay time	0.0s~3600.0s	0.0s	\checkmark

	F	P6 start and stop control		
P6-00	Starting mode	0: Directly start 1: start after speed tracking 2: Pre-excitation start (AC asynchronous machine)-	0	\checkmark
P6-01	Speed tracking mode	00: starts from stop frequency 1: starts at zero speed 2: Starting from the maximum frequency	0	×
P6-02	The speed of speed tracking	1~100	20	\checkmark
P6-03	Starting speed	0.00Hz~10.00Hz	0.00Hz	\checkmark
P6-04	Starting speed keeping time	0.0s~100.0s	0.0s	×
P6-05	Start DC braking current / pre-excitation current	0%~100%	0%	×
P6-06	Start DC braking time / pre-excitation time	0.0s~100.0s	0.0s	×
P6-07	Acceleration and deceleration mode	0: Linear acceleration / deceleration 1: S curve acceleration / deceleration A 2: S curve acceleration and deceleration B	0	×
P6-10	Stop mode	0: Deceleration stop 1: free parking	0	\checkmark
	F	7 keyboard and display	1	1
P7-01	MF.K function button option	0: MF.K is invalid 1: Switchover between Operation panel command channel and remote command channel (terminal command channel or communication command channel) 2: Forward and reverse switching 3: Forward Jog 4: Reverse Jog	0	×
P7-02	STOP/RESET function	0: STOP/RES button enable only in operation panel control mode 1: STOP/RES button enable in any control mode	1	~
P7-03	LED display parameters 1 in running mode	0000~FFFF Bit00: Running frequency 1 (Hz) Bit01: Setting frequency (Hz) Bit02: DC bus voltage (V) Bit03: Output voltage (V)	H.001F	~

		Bit04: Output current (A)		
		Bit05: Output power (KW)		
		Bit06: Output torque (%)		
		Bit07: DI input status		
		Bit08: DO output status		
		Bit09: All voltage (V)		
		Bit10: Al2 voltage (V)		
		Bit11: Voltage of potentiometer(V)		
		Bit15: PID setting		
		Bit16: Motor speed (RPM)		
P7-04	LED display parameters 2 in	0000~FFFF	0	\checkmark
	running mode	Bit00: PID feedback		
		Bit03: Running frequency 2 (Hz)		
		Bit04: Rest running time		
		Bit05: All before correction voltage (V)		
		Bit06: Al2 before correction voltage (V)		
		Bit07: Operation panel potentiometer		
		before correction voltage (V)		
		Bit08: Line speed		
		Bit09: Current power-on time (Hour)		
		Bit10: Current running time (Min)		
P7-05	LED display in stop mode	0000 ~ FFFF	33	\checkmark
		Bit00: Set frequency (Hz)		
		Bit01: Bus voltage (V)		
		Bit02: DI input status		
		Bit03: DO output status		
		Bit10: Load speed		
		Bit11: PID setting		
P7-06	Load speed display factor	0.0001~6.5000	1.0000	\checkmark
P7-07	IGBT temperature	0.0°C~100.0°C	-	•
P7-08	Rectifier temperature	0.0°C~100.0°C	-	•
P7-09	Cumulative run time	0h~65535h	-	•
P7-11	Software version No.	-	-	•
P7-12	The number of decimal	0: 0 decimal places	1	\checkmark
	places of load speed	1:1 decimal place		
	Displays	2: 2 decimal places		
		3: 3 decimal places		
P7-13	Accumulated time since	0~65535 hour	-	•
	power on			
P7-14	Cumulative power	0~65535 KWh	-	•
	consumption			

		P8 Auxiliary function		
P8-03	Acceleration time 2	0.0s~6500.0s	Per model	\checkmark
P8-04	Deceleration time 2	0.0s~6500.0s	Per model	\checkmark
P8-13	Reverse running enable	0: Allow 1: Forbidden	0	\checkmark
P8-14	Running mode when setting frequency is less than the lower limit frequency	0: Run at lower limit frequency 1: stop 2: Zero speed running	0	\checkmark
P8-18	Start protection selection	0: Disable 1: Enable	0	\checkmark
P8-27	Terminal control prior	0 : Invalid 1: Valid	0	\checkmark
P8-36	Output current over limit	0.0% (No detect) 0.1%~300.0% (Rated current)	200.0%	\checkmark
P8-37	Output current over limit detect relay time	0.00s~600.00s	0.00s	\checkmark
P8-42	Timing function selection	0: Invalid 1: Valid	0	\checkmark
P8-43	Timing of run time selection	0: Set by P8-44 1: Al1 2: Al2 3: Potentiometer of operation panel The range of analog input corresponds to P8-44	0	~
P8-44	Timing value setting of running time	0.0Min~6500.0Min	0.0Min	\checkmark
P8-47	IGBT Module temperature arrives	0℃~100℃	75℃	\checkmark
P8-48	Cooling fan control	0: Working in running 1: Working after power up 2:Working by temperature(45°C/40°C) 3:Solar Mode, working if Vpn > PE-16)	0	\checkmark
P8-49	Wake up frequency	Sleep frequency (P8-51)~Maximum (P0-10)	0.00Hz	\checkmark
P8-50	Wake up delay time	0.0s~6500.0s	0.0s	\checkmark
	P9 g	roup Fault and protection		
P9-00	Motor overload protection selection	0: Prohibited 1: Allow	1	\checkmark

P9-01	Motor overload protection gain	0.20~10.00	1.00	\checkmark
P9-02	Motor overload pre- warning coefficient	50%~100%	80%	\checkmark
P9-03	Overvoltage stall gain	0~100	0	\checkmark
P9-07	Ground short circuit	0: Invalid	0	\checkmark
	protection options when power on	1: Valid		
P9-09	Automatic reset times	$0\sim$ 20(when set 20 means unlimited times)	20	\checkmark
P9-10	DO (digital output) when fault alarm auto reset	Unit: 0: No action 1: Action Tens: 0: Reset immediately when under voltage fault 1: Reset time follow P9-11 when under voltage fault	но.о	~
P9-11	Fault auto reset interval time	0.1s~999.9s	5.0s	\checkmark
P9-12	Input phase loss/ contactor pull protection selection	Bit: Input phase loss protection selection Ten: Contactor pull protection options 0: Prohibited 1: Allow	00	~
P9-13	Output phase loss protection	0: Prohibited 1: Allow	0	\checkmark
P9-14	First failure alarm type	 0: No fault 2: Over current in acceleration 3: Over current in deceleration 4: Over current in constant speed during 5: Over voltage in acceleration 6: Over voltage in deceleration 7: Over voltage in constant speed during 8: Buffer resistance overload 9: Under voltage 10: Inverter overload 11: Motor overload 12: Input phase loss 	-	•
P9-15	Second fault alarm type	 13: Output phase loss 14: IGBT Module overheating 15: External fault 16: Communication error 17: Contactor is abnormal 18: Current detection is abnormal 19: Motor tuning abnormal 20: Encoder / PG card is abnormal 	-	•

		21: Parameter read and write exception		
		22: Inverter hardware abnormality		
		23: Motor to ground short circuit		
	The third (latest and) type			
179-10	affailura	26: Ronning lime drives	-	•
		29: Power-up lime arrives		
		30: Under Iodd		
		31: PID feedback is missing in running		
		40: Fast current limit fimeout		
		41:Motor switch in running		
		42: The speed deviation is too big		
		43: Motor over speed		
		45: Motor over temperature		
P9-17	Frequency at when the	_	-	•
	third (last) failure frequency			
P9-18	Current at when the third	_	_	•
	(last) failure frequency			
F7-17	DC DUS VOIldge di when	-	-	•
	fine inira (lasi) ialiure			
	frequency			
P9-20	Input terminals status at	-	-	•
	when the third (last) failure			
	frequency			
P9-21	Output terminals status at	_	_	•
	when the third (last) failure			
	frequency			
P9-22	Inverter status when the	-	_	•
	third (last) failure frequency			_
P0 23	Rower up time when the			
F 7-23	third (last) failure frequency	-	-	•
P9-24	Running time when the	-	-	•
	third (last) failure frequency			
P9-27	Frequency at when the	-	-	•
	second failure			
P9-28	Current at when the	_	_	•
	second failure			
122-28	DC bus voltage at when	-	-	
	the second tailure			
P9-30	Input terminals status at	-	-	\bullet
	when the second failure			
P9-31	Output terminals status at	-	_	•
	when the second failure			

P9-32	Inverter status at when the second failure	-	-	•
P9-33	Power up time when the second failure	-	-	•
P9-34	Running time when the second failure	-	-	•
P9-37	Frequency at when the third failure	-	-	•
P9-38	Current at when the third failure	-	-	•
P9-39	DC bus voltage at when the third failure	-	-	•
P9-40	Input terminals status at when the third failure	-	-	•
P9-41	Output terminals status at when the third failure	-	-	•
P9-42	Inverter status at when the third failure	-	-	•
P9-43	Power up time when the third failure	-	-	•
P9-44	Running time when the third failure	-	-	•
P9-50	Fault protection action selection 4	Bit: the speed deviation is too large (42) 0: Free stop 1: Stop by stop mode 2: Continue to run Ten: Motor over speed (43) Hundred places: initial position error (51)	00000	~
P9-54	Running frequency of continue running when fault alarm	 0: Run at the current operating frequency 1: Run at set frequency 2: Run at the upper limit frequency 3: Run at the lower limit frequency 4: Run at an abnormal standby frequency 	0	~
P9-55	An abnormal standby frequency	0.0%~100.0% (100.0% corresponds to the maximum frequency P0-10)	100.0%	\checkmark
P9-56	Motor temperature sensor type	0: No temperature sensor 1: PT100 2: PT1000	0	\checkmark
P9-57	Motor overheat protection threshold	0℃~200℃	110℃	\checkmark

D0 50			00%0	,
P9-58	Motor overneat		90.0	\checkmark
D0 50	Working action of	Othydid	0	
17-37			0	\sim
		1. Deceleration stop		
P9-60	Judgment voltage of	80.0%~100.0%	90.0%	\checkmark
	instantaneous power fail			
	pause			
P9-61	Voltage recovery	0.00s~100.00s	0.50s	\checkmark
	judgment time when			
	instantaneous power fail			
P9-62	Judgment voltage of	60.0%~100.0%(Standard bus voltage)	80.0%	\checkmark
	instantaneous power			
	failure action			
P9-63	Load miss protection	0: Disable 1: Enable	0	\checkmark
P9-64	Load miss detection level	0.0~100.0%	10.0%	\checkmark
P9-65	Load miss detection time	0.0~60.0s	1.0s	\checkmark
P9-67	Over speed detection	0.0%~50.0%(Max frequency)	20.0%	\checkmark
P9-68	Over speed detection time	0.0s: No detect	1.0s	\checkmark
		0.1~60.0s		
P9-69	Detection value of the	0.0%~50.0%(Max frequency)	20.0%	\checkmark
	speed deviation is too big			
P9-70	Detection time of speed	0.0s: No detect	5.0s	\checkmark
	deviation is too big.	0.1~60.0s		
		PA Group PID function		
PA-00	PID reference source	0: PA-01	0	\checkmark
		1: All		
		2: AI2		
		3: Keyboard potentiometer		
		4: PULSE train setting (DI5)		
		5: Communication reference		
		6: Multi-step instructions reference		
PA-01	PID value setting	0.0%~100.0%	50.0%	\checkmark
PA-02		0. 411	0	
		1: AI2		ľ
		2: Keyboard potentiometer		
		A: PULSE softing (DIS)		
		6: AII + AI2		

		7: MAX (AI1 , AI2)		
		8: MIN (AI1 , AI2)		
PA-03	PID working direction	0: Positive effect	0	\checkmark
		1: Reverse effect		
PA-04	PID reference feedback range	0~65535	1000	\checkmark
PA-05	Proportional gain Kp1	0.0~100.0	20.0	\checkmark
PA-06	Integral time Ti1	0.01s~10.00s	2.00s	\checkmark
PA-07	Differential time Td1	0.000s~10.000s	0.000s	\checkmark
PA-08	PID reversal cutoff frequency	0.00~Maximum frequency	2.00Hz	\checkmark
PA-09	PID deviation limit	0.0%~100.0%	0.0%	\checkmark
PA-10	PID differential limiting	0.00%~100.00%	0.10%	\checkmark
PA-11	PID reference given change time	0.00~650.00s	0.00s	\checkmark
PA-12	PID feedback filter time	0.00~60.00s	0.00s	\checkmark
PA-13	PID output filter time	0.00~60.00s	0.00s	\checkmark
PA-14	Reserve	-	-	\checkmark
PA-15	Proportional gain Kp2	0.0~100.0	20.0	\checkmark
PA-16	Integral time Ti2	0.01s~10.00s	2.00s	\checkmark
PA-17	Derivative time Td2	0.000s~10.000s	0.000s	\checkmark
PA-18	PID parameter switching condition	0: Do not switch 1: Switch via DI terminal 2: Automatic switching according to the deviation	0	\checkmark
PA-19	PID parameter switching deviation 1	0.0%~PA-20	20.0%	\checkmark
PA-20	PID parameter switching deviation 2	FA-19~100.0%	80.0%	\checkmark
PA-21	PID initial value	0.0%~100.0%	0.0%	\checkmark
PA-22	PID initial value hold time	0.00~650.00s	0.00s	\checkmark
PA-23	The maximum value of positive deviations for two output	0.00%~100.00%	1.00%	\checkmark
PA-24	The maximum value of reverse deviations for two output	0.00%~100.00%	1.00%	\checkmark
PA-25	PID integral property	Bit: Integral separation	00	\checkmark

PA-26	PID feedback loss detection value PID Feedback loss	0: Invalid 1: Valid Ten:Whether to stop the integral working after outputting to the limit 0: Continue integral working 1: Stop integral working 0.0%:Do not judge feedback loss 0.1%~100.0% 0.0s~20.0s	0.0% 0.0s	 ✓ ✓
PA-28	detection time PID calculating when stop	0: Don't execute calculating when stop 1: Execute PID calculating when stop	0	\checkmark
	F	D Group communication		
PD-00	Communication baud rate	bit: MODBUS 0: 300BPS 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS 5: 9600BPS 6: 19200BPS 6: 19200BPS 7: 38400BPS 8: 57600BPS 9: 115200BPS 7en: Profibus-DP 0: 115200BPS 1: 208300BPs 2: 256000BPs 3: 512000Bps Hundred places: reserved	6005	~
PD-01	MODBUS data format	0: No parity (8-N-2) 1: Even check (8-E-1) 2: Odd parity (8-O-1) 3: No parity (8-N-1) (MODBUS active)	0	~
PD-02	Local address	0: Broadcast address 1~249 (MODBUS、Profibus-DP、CANlink enable)	1	\checkmark
PD-03	MODBUS respond relay	0~20ms (MODBUS enable)	2	~

	PE Solar Pump inverter control parameters				
PE-00	Solar pump control mode	0:Disable of solar pump control	1	Х	
		1: Enable (Algorithm-1, High efficiency)			
		2: Enable (Algorithm-2, High stability)			
PE-01	Solar pump control mode option	Units: Vmpp mode selecting 0: Vmp set by PE-02 manually (CVT) 1: MPPT automatically Tens: VOC detect mode 0: Voc set by PE-03 manually 1: Voc detect automatically Hundreds: Auto running by keypad 0: Disable 1: Auto start after power-on(P0-02=0)	H.O.O.1.1	~	
		Thousands: AC detect active 0: Disable 1: Auto detect (Above 5.5KW)			
PE-02	CVT voltage set by manual	0 -100%	80%	\checkmark	
PE-03	Voc (open loop voltage) set manually	0.0V-1000.0V	650V/ 380V	V	
PE-04	DC bus voltage stability Proportional gain	0.0% - 999.9%	100.0%	\checkmark	
PE-05	DC bus voltage stability Integral gain	0.0% - 999.9%	100.0%	\checkmark	
PE-06	DC bus voltage stability differential gain	0.0% - 999.9%	0%	\checkmark	
PE-07	Initial point of fast frequency drop	0.0 - 100.0%	5.0%	\checkmark	
PE-08	Stop point of fast frequency drop	0.0 - 100.0%	50.0%		
PE-09	Weak magnetic limit multiples	0.0- 9.9	0.0		
PE-10	Mppt search upper limit voltage	0.0% - 100.0%	10%	\checkmark	
PE-11	Mppt search lower limit voltage	0.0% - 100.0%	75%	\checkmark	
PE-12	MPPT search gain	0% - 500%	100%	\checkmark	
PE-13	MPPT search interval	0.0 - 10.0sec	0.5sec	\checkmark	
PE-14	Stabilizer filtering time (solar	0-1000ms	50ms		

	pump control mode2)			
PE-15	Reserve	0	0	
PE-16	Sleep voltage threshold	0.0 - 1000.0V	300.0V/	\checkmark
			200.0V	
PE-17	Wake up voltage threshold	0.0 - 1000.0V	350.0V/	\checkmark
			250.0V	
PE-18	Awake waiting time	0-30000sec	60sec	\checkmark
PE-19	Stop frequency setting	0.00Hz ~300.00Hz	10.00Hz	\checkmark
	when low speed			
PE-20	Detecting time of low	0-30000sec	60sec	\checkmark
	frequency protection			
PE-21	Low speed protection auto	0-30000sec	60sec	\checkmark
	reset delay time			
PE-22	Dry run protection	0.0 - 999.9A	0.0A	\checkmark
	detecting current			
PE-23	Dry run protection	0-30000sec	10sec	
	detecting time			
PE-24	Dry run protection auto	0-30000sec	60sec	
	reset relay time			
PE-25	Detecting current of over	0.0 - 999.9A	0.0A	1
	current protection			
PE-26	Detecting time of over	0-30000sec	10sec	1
0				ľ
PF-27	Over current auto reset	0 - 30000sec	60sec	1/
1 2 2/	delay time			ľ
PF-28	DC bus voltage drop	0.0% - 100.0%	90.0%	~/
PE-29	Frequency detect when		/0.0/0	~
	voltage drop	0.0% - 100.0%	15.0%	
DE 30	Minimum power protection	0.30000505	300:00	
FE-30		0-30000sec	JUUSEC	
DE 21		Digit: Water full data at made	40.0.0	
FE-31		Digit. Water foil defect mode	ПО.0.0	
	delecting method			
		3: Alz andlog		
		le sie dete stien sele stien		
		Hundrod: Single point data at 50#		
		function logic data sties and attention		
		U: Normal Open, work when open,		
		stop when switch on		
		1: Normal close, work when close,		
		stop when open.		

PE-32	Water full level detecting	0 - 10	00.0%	25.0%	\checkmark
	threshold of analog				
PE-33	Water full level reach	0 - 30	0000sec	10sec	\checkmark
	protection detecting time				
PE-34	Water full level protection	0 - 30	0000sec	10 sec	\checkmark
	exit relay time				
PE-35	Water level sensor probe	0 - 10	00.0%	0.0%	\checkmark
	damage threshold				
PE-36	DC current correction	0.0 -	200.0%	100.00%	\checkmark
	factor				
PE-37	DC current correction bias	-100.	00A - 100.00A	0.00A	\checkmark
PE-38	Power point 0 of PQ Current	0.0kv	v - 999.9kw	0.5kw	\checkmark
PE-39	Power point 1 of PQ Current	0.0kv	v - 999.9kw	1.0kw	\checkmark
PE-40	Power point 2 of PQ Current	0.0kv	v - 999.9kw	1.5kw	\checkmark
PE-41	Power point 3 of PQ Current	0.0kv	v - 999.9kw	2.0kw	\checkmark
PE-42	Power point 4 of PQ Current	0.0kv	v - 999.9kw	2.5kw	\checkmark
PE-43	Flow point 0 of PQ curve	0.0 -	999.9m^3/h	0.0 m^3/h	\checkmark
PE-44	Flow point 1 of PQ curve	0.0 -	999.9m^3/h	5.0 m^3/h	\checkmark
PE-45	Flow point 2 of PQ curve	0.0 -	999.9m^3/h	10.0m^3/	\checkmark
				h	
PE-46	Flow point 3 of PQ curve	0.0 - 999.9m^3/h		15.0m^3/	\checkmark
				h	
PE-47	Flow point 4 of PQ curve	0.0 -	999.9m^3/h	20.0m^3/	\checkmark
				h	
PE-48	Initiating frequency of dry	0.00	- 320.00Hz	0.0Hr	\checkmark
	run protection				
PE-49	Sleep power setting	0.0%	- 100.0%	0.0%	\checkmark
PE-50	Detecting time of sleep	0 - 30	0000sec	60sec	\checkmark
	power				
PE-51	Sleep frequency	0.00	Hz ~300.00Hz	10.00Hz	\checkmark
	PP Factor	y func	tion code management		
PP-00	User password		0~65535	0	\checkmark
PP-01	Parameter initialization		0: No operation	0	\checkmark
			1: Reset parameters to factory		
			default(not include motor		
			parameters)		
			2: Clear record information		
PP-05	Distributor unlock password		0 - 65535		
	PF D	istribut	tor password setting	· ·	
PF-06	Distributor password setting		0 - 65535		
PF-07	Distributor allow total running	time	0 - 65535Hr	Max. 7.4	
				Year	

Chapter 7. Explanation for special parameters

	Motor control mode		Factory setting	0
	Setting range	0	VF control	
DO 01		1	Open loop sensorless vector control	
FU-U1		2	Close loop sensor vector control with PG card	
		3	2 wires output for single phase pump	
		4	3 wires output for single phase pump	

Some parameters description which may relative with solar pump control.

3: 2 wires output for single phase pumps when capacitors can't removed.

4: 3 wires output for single phase pumps when starting capacitors removed

	Running command		Factory setting	0
	source			
DO 00	Setting -	0	Keyboard/ keypad/ operation panel (LED turn	
P0-02			off)	
		1	Terminals control (LED turn ON)	
		2	Communication (LED Flash)	

0: Keypad (operation panel); The running command is given by keypad.

1: External terminals; The running command controlled by multiple function terminals. Refer to P4 parameters of input terminals command .

Example: When DI1 and COM is short circuit connection and P4-00 = 1, then you will get a auto-start in the morning and auto-stop when sundown function.

DO 15	Carrier frequency	Factory setting	Per model
PU-15	Setting range	0.5kHz~16.0kHz	

It uses to adjust the carrier frequency. By adjusting the carrier frequency can reduce the motor noise, to avoid the resonance point of the mechanical system, to reduce the line to ground leakage current and reduce the interference generated by the inverter

When the carrier frequency is low, the output current harmonic component increases, the motor loss increases, the motor temperature rise.

When the carrier frequency is high, the motor loss decreases, the motor temperature decreases, but the inverter loss increases, the inverter temperature increases, interference increases. Adjusting the carrier frequency affects the following performance:

Carrier frequency	Low \rightarrow High
Motor noise	Big → Small
Output current waveform	Low → Good
Motor temperature rise	High \rightarrow Low
Inverter temperature rise	Low \rightarrow High
Leakage current	Small → Big
External radiation interference	Small → Big

	Motor type		Factory setting	0	
		0	General asynchronous motor		
P1-00	Sotting range	1	Variable frequency asynch	nronous motor	
	Sering range	2	Permanent magnet synch	ronous motor	
			(PMSM)		
	Rated power		Factory setting	As per model	
	Setting range		0.1KW~1000.0KW		
D1 02	Rated voltage		Factory setting	As per model	
FI-UZ	Setting range		1V~2000V		
	Rated current		Factory setting	As per model	
P1-03	Setting range		Power of inverter <= 55KW: 0.01A~655.35A		
			Power of inverter > 55KW : 0.1A~6553.5A		
	Rated power		Factory setting	As per model	
11-04	Setting range		0.01Hz~Max power of inverter		
D1 05	Rated speed		Factory setting	As per model	
FT-03	Setting range		1rpm~65535rpm		

Set above parameters for motor to protect and perform better!

P4 Group input terminals					
P4-00	DI1 digital input function	0: No function 1: Forward run FWD or run command	1	×	
P4-01	DI2 digital input function	2: Reverse run REV or forward and reverse run direction	53	×	
P4-02	DI3 digital input function	8: Free stop 9: Fault reset (RESET) 10: Rup pause	9	×	
P4-03	DI4 digital input function	51:Water tank full detect 1 52:Water tank full detect 2 53:MPPT tracking stop/ solar pump control disable	51	×	
P4-04	DI5 digital input function		52	×	

51 and 52 two digital input for water level full function activating.

Install a height place aside from water full leveling to form a water full detection hysteresis. 53: User can use to this function to disable solar pump control function by terminals.

When this function is activated, inverter will work AC mode and exit of solar control mode.

PE solar pump control parameters explanation:

PE-00	Solar pump control	0: Disable	
	mode	1: Enable (Algorithm-1, High efficiency)	1
		2: Enable (Algorithm-2, High stability)	

When choose 1 for high efficiency ,its related parameters:PE-04,PE-05,PE-06 for MPPT gain. When choose 2 for high stability ,its related parameters:PE-12,PE-13,PE-14 for MPPT gain.

PE-04	DC bus voltage stability gain	0.0% - 999.9%	100.0%
PE-05	DC bus voltage stability Integral gain	0.0% - 999.9%	100.0%
PE-06	DC bus voltage stability differential gain	0.0% - 999.9%	0.0%

PE-04 to PE-06 use to adjust MPPT tracking ratio, and keep DC bus voltage in stability.

PE-07	Initial point of fast frequency drop	0.0 - 100.0%	5.00%
PE-08	Stop point of fast frequency drop	0.0 - 100.0%	50.00%

In some cloudy case, the inverter can't get enough solar energy from PV arrays, so we program inverter drop frequency quickly, make pump in generating mode, feedback energy to inveter to maintain DC bus voltage.PE-07=0, frequency quick drop function is disable.

PE-09	Weak magnetic limit multiples	0.0- 9.9	1.2
PE-10	Mppt search upper limit voltage	0.0% - 100.0%	90%
PE-11	Mppt search lower limit voltage	0.0% - 100.0%	75%
PE-12	MPPT search gain	0% - 500%	100%
PE-13	MPPT search interval	0.0 - 10.0sec	2.0sec
PF-14	Stabilizer filtering time (sold pump control	0-1000ms	50ms
FE-14	mode 2)		001113

PE-10/PE-11 use to set Vmpp range, and PE-12 is used to set MPPT searching gain, and PE-13 is used to set MPPT searching interval time. When the output frequency is fluctuating after activated MPPT searching, the performance can be improved by reducing PE-12 MPPT searching gain value and increase PE-13 the MPPT searching interval

PE-16	Sleep voltage threshold	0.0 - 1000.0V	250V/150V
PE-17	Wake up voltage threshold	0.0 - 1000.0V	350V/250V
PE-18	Awake waiting time	0-30000sec	60sec

PE-16 to FE-18 use to set solar pump inverter if go to sleep mode when input DC voltage is too low, and wake up automatically when DC bus voltage recovery again.

When the DC voltage is lower than FE-16 setting value for a system default time, it will go to sleep and sent out A.SLP alarm code. When DC bus voltage raises again and higher than PE-17 value for a FE-18 setting time, the inverter will be wake up to work again.

PE-19	Stop frequency setting when low speed	0.00Hz ~300.00Hz	10.00Hz
PE-20	Detecting time of low frequency protection	0 - 30000sec	20sec
PE-21	Low speed protection auto reset delay time	0 - 30000sec	60sec

If the output frequency is lower than PE-19 for a low speed detecting time PE-20, the solar pump inverter will stop to running and sent out A.LFr alarm.

Once the output frequency is greater than PE-19 for PE-21 (automatic recover time), the inverter will restore to working.

PE-22	Dry run protection current	0.0 - 999.9A	0.0A
	threshold (under-load		

	protection)		
PE-23	Dry run detect delay time	0-30000sec	10sec
PE-24	Automatic recover time in	0.30000000	40:00
	dry run protection mode	0-30000sec	OUSEC

If the output current is lower than PE-22 (Dry run current) for PE-23(dry run detect delay time), the inverter will go to dry run protection mode and sent out A.LLd alarm.

Once the current is bigger than PE-22 again for PE-24 (recover time of dry run), the inverter will restore to working.

PE-25	Motor over current protection threshold	0.0 - 999.9A	0.0A
PE-26	Over current detect delay time	0 - 30000sec	10sec
PE-27	Automatic recovery time in over current protection mode	0 - 30000sec	60sec

PE-25, PE-26, PE-27 parameters are used to set motor over current protection.

If the over current is bigger than PE-25 for PE-26time, the drive will go to stop mode for providing motor protection and sent out A.OLd alarm.

Once the current is lower than PE-25 for PE-27 recover time, inverter will recover to work again.

		Digit: Water full detect	
		mode	
		0: 1 point detect	
		1:2 points detect	
		2: Al1 analog	
		3: Al2 analog	
		Ten: Single point detect 51#	
		function logic detection	
PE-31		selecting	H0.00
	aetecting method	Hundred: Single point	
		detect 52# function logic	
		detection selecting.	
		0: Normal Open, work when	
		open, stop when switch on	
		1: Normal close, work when	
		close,	
		stop when open.	
	Water full level detecting	0.100.077	05.077
PE-32	threshold of analog	0 - 100.0%	23.0%
	Water full level reach	0.3000000	10000
PE-33	protection detecting time	0 - 3000036C	TUSEC
PE-34	Water full level protection	0. 2000000 0	(0.0.0
	exit relay time	0 - 30000sec	ousec
	Water level sensor probe	0 100 077	0.097
PE-35	damage threshold	0 - 100.0%	0.0%

PE-31 parameter is used to set detecting method of water tank leveling.

The 1 point digital terminal water tank full detecting is default setting. There are normal open and normal close for selection.

For water well dry run detection, we can select normal close of digital function.

For water tank full detection, we can select normal open of digital function.

If select 2 points digital terminals full detect, please see below explanation:

Any 2 terminals (DI4 and DI5 are in default setting) can use to set for terminals digital detecting, the function code is 51/or 52. If both terminals are valid, it can able to activate water tank fulling protection, if both terminals are invalid, the water tank full is disable, only one terminals is valid, keep no changing of current working status.

PE-33/PE-34 are used to set water full detecting time and protection exit relay time. PE-35 is used to set analog sensor damage detection threshold, when PE-31 is set for analog detecting, and feedback analog value larger than PE-35 setting threshold, and will judge the sensor is broken, submit A.Prb alarm as well, and inverter stop to working; The sensor probe detecting is disable when PE-31 set for 0.

PE-38	Power point 0 of PQ Current	0.0kw - 999.9kw	0.5kw
PE-39	Power point 1 of PQ Current	0.0kw - 999.9kw	1.0kw
PE-40	Power point 2 of PQ Current	0.0kw - 999.9kw	1.5kw
PE-41	Power point 3 of PQ Current	0.0kw - 999.9kw	2.0kw
PE-42	Power point 4 of PQ Current	0.0kw - 999.9kw	2.5kw
PE-43	Flow point 0 of PQ curve	0.0 - 999.9m^3/h	0.0 m^3/h
PE-44	Flow point 1 of PQ curve	0.0 - 999.9m^3/h	5.0 m^3/h
PE-45	Flow point 2 of PQ curve	0.0 - 999.9m^3/h	10.0m^3/h
PE-46	Flow point 3 of PQ curve	0.0 - 999.9m^3/h	15.0m^3/h
PE-47	Flow point 4 of PQ curve	0.0 - 999.9m^3/h	20.0m^3/h

The set of parameters calculates the output flow rate (U0-13) based on the output power (U0-05), user can program PE-38 ~ PE-47 according to P-Q curve of pumps, and U0-13 flow rated can be calculated by software.

PE-48	Initiating frequency of dry run protection	0.00 - 320.00Hz	0.0Hz	\checkmark
PE-49	Sleep power setting	0.0% - 100.0%	0.0%	\checkmark
PE-50	Detecting time of sleep power	0-30000sec	60sec	\checkmark
PE-51	Sleep frequency	0.00Hz ~300.00Hz	10.00Hz	\checkmark

PE-48 parameters use to select dry run function starting frequency. Only the output frequency is higher than this setting, the dry run is activated.

The inverter can able to detect sleep voltage and sleep power when enter to sleep mode PE-49, PE-50 and PE-51 for power judge sleep mode.

When PE-49=0.0%, the inverter goes to sleep mode by judging sleep voltage PE-17.

When PE-49 is not =0.0%, the inverter goes to sleep mode by judging sleep power.

(If the power less than PE-49 and output frequency is lower than PE-51 for PE-50 relay time , inverter will go to sleep mode.)

Chapter 8. Monitoring parameters

Monitor	Monitoring contents	Unit	Address	
parameters	Mormoning comerns	UTIII	71001033	
U0-00	Output frequency	0.01Hz	7000H	
U0-01	U0-01 Preset frequency		7001H	
U0-02	DC voltage of PV arrays	0.1V	7002H	
U0-03	Output voltage	1V	7003H	
U0-04	Output current	0.01A	7004H	
U0-05	Power of PV arrays	0.1KW	7005H	
U0-06	Current of PV arrays	0.01A	7006H	
U0-07	DI input status	1	7007H	
U0-08	DO output status	1	7008H	
U0-09	All	0.01V	7009H	
U0-10	Al2	0.01V	700AH	
U0-11	Motor (pump) speed	1rpm	700BH	
U0-12	PV open loop circuit voltage (Voc)	0.1V	700CH	
U0-13	Flow rate of pump	0.1m^3/hr	700DH	
U0-14	Day flow	0.1m^3	700EH	
10-15	Flow accumulation	0.1m^3	700EH	
00-13	(low-order digit)	0.11173	700111	
U0-16	flow accumulation (low-order digit)	0.1Km^3	7010H	
U0-17	Day generated power	0.1kwh	7011H	
110-18	Generated accumulation	0 1kwb 7012H		
	(low-order digit)	0.18001	701211	
110-19	Generated accumulation	0 1 Mwb 7013H		
	(high-order digit)	0.11/11/1	, 61611	
U0-20 The rest running time		0.1Min	7014H	
U0-24	Pump running speed	r/min	7018H	
U0-25	Current power up time	1 min	7019H	
U0-26	Current running time	0.1min	701AH	
U0-45	Fault information	1	702DH	
U0-61	Inverter working status	1	703DH	

SP300Alarm code	Alarm index code	Alarm description	Solutions
A.SLP 81 Sleep mode A.LFr 82 Low frequency protection		Sleep mode	 Check total solar power input, the total power of solar arrays should be bigger 1.3 times of the pump. Check if enough DC Vmp, Increase the PE-04 and PE-05 value Check PE-16 setting
		Low frequency protection	If the output frequency is lower PE-19 setting, this alarm will be activated for pumps protection, please set PE-19 for low value if need.
A.LLd	83	Dry run/under load protection	Set PE-22 value to disable this alarm.
A.OLd	84	Over current/ over load protection	Set over current PE-25 for low or set for 0.
A.LPr	85	Minimum power	Waiting for recovery
A.FuL	86	Water tank fulling	To check if water is fulling
A.Prb	87	Analog sensor problem failure	To check if the sensor is broken or set PE-35 for lower
Err.98	98	Distributor running time reach	Contact with your distributor

Chapter 9. Trouble-shooting

Alarm	Alarm	Possible region	Solutions	
code	description		3010110115	
		1, The inverter output short circuit	1, Excluding the external fault	
		2, The motor and inverter wiring is	2, Install the reactor or output filter	
	Invertor unit	too long	3, Check the air duct is blocked;	
Err01	Inverter Unit	3, The module overheating	4, Plug all the cable	
	protection	4. The inverter wiring is loose	5, Seek technical support	
		5, The circuit board abnormal		
		6, Inverter module exception		
		1, Motor to ground short circuit	1, Excluding the external fault	
		2, Not perform auto tuning	2, Perform motor ID auto tuning	
		3, The acceleration time is too short	3, Increase the acceleration time	
Err02/	Over current in	4, Torque boost is not appropriate	4, Adjust the torque boost or V / F	
		5, The grid voltage is low	curve	
EF.OC I	acceleration	6, Loading suddenly in	5, Adjust voltage of power supply	
		acceleration	6, Adjust the load	
		7, The using Inverter power is small	7, Select big power inverter	

		1. Output short circuit or output to	1. Excluding the external fault
		around	2 Perform motor ID auto tuning
		2 No performance ID quite tuning	2. In error and the generation time
F.00/			4, Adjust voltage of power supply
Err03/	Over current in	3, The deceleration time is too short	
Er.oC2	deceleration	4, The voltage is low	5, Cancel the suddenly adding
		5, Loading suddenly when	load
		deceleration	6, Install braking unit or braking
		6, No installing of brake unit and	resistor
		brake resistor	
		1, The inverter output short circuit	1, Excluding the external fault
		or phase to ground	2, Perform motor ID auto tuning
		2, No performance ID auto tuning	3, Cancel the sudden loading
Err04/	Over current in	for carrying vector control	4, Cancel the suddenly adding
	constant speed	3, The voltage of grid is low	load
LI.0C3	running	4, Whether there is a sudden load	5. Select big power inverter
		in running	instead
		5, The using Inverter capacity	
		(rated power is small	
		1, The input voltage is high	1, Adjust voltage to the normal
		2, The acceleration process there is	range
Err05/		an external drag motor running	Cancel the additional force or
		3, The acceleration time is too short	install braking resistor
LI.001	deceleration	4, No brake unit and brake resistor	3, Increase the acceleration time
			4, Install the braking unit or
			braking resistor
		1, The input voltage is high	1, Adjust voltage to normal range
		2, The process of deceleration	2, Cancel the additional force or
ErrO(/	Deceleration over	there is an external drag motor	install braking resistor
	Deceleration over	running	3, Increase acceleration time
E1.002	volidge	3, Deceleration time is too short	4, Install the braking unit or
		4, No brake unit and brake resistor	braking resistor
		1, Input voltage is high	1. Increase voltage go normal
Err07/	Over voltage in	2. ,The process of deceleration	range
Er.oU3	constant speed	there is an external drag motor	2. Cancel external force or install
		running	braking resistor
Err08/	Snubber resistor	1. Input voltage is out of limit	Adjust voltage to normal range
Er.oHr	failure		
		1, Instantaneous power failure	1, Reset the fault
Errood		2, Input voltage is out of limit	2, Adjust the voltage to the
	Under voltage fault	DC bus voltage is abnormal	normal range
Er.LUI		4, rectifier bridge and buffer	3, seek technical support
		resistance is not normal	

I			
		1 If load is too big, or motor is	1. Reduce the load and check
Err10	Inverter over load	blocked or not	the motor and machine condition
/Er.oL1		2. Using inverter capacity is too	2. Select bigger one capacity of
		small	motor
		1, The motor protection parameter	Set correct parameter
		P9-01 set is appropriate	Reduce load or check motor and
Err11	Motor overload	2, The load is too large or motor is	driving machine
/Er.oL1		blocked	Select bigger power inverter
		3, Using the power of inverter too	
		small	
		1, Three-phase input power is not	1, Check and eliminate the
		normal	problems in the external lines
Err12		2, The driving board exception	2, Seek technical support
/Er.iLF	Input phase loss	3, Lightning board abnormalities	
		4, The main control board	
		exception	
		1, The inverter wiring is damaged	1, Excluding the external fault
F ee 1.2		2, 3 phase output is not balance of	2, Check the motor three-phase
	Output phase loss	inverter when motor running	winding is normal and
/Er.OLF		3, Driving board is abnormal	troubleshooting
		4, IGBT modulel is abnormal	3, seek technical support
		1, The ambient temperature is too	1, Reduce the ambient
		high	temperature
Err14		2, Air duct blockage	2, Clean up the duct
		3, The fan is damaged	3, Replace the fan
/	overneur	4, IIGBT module thermistor is	4, Replace the thermistor
		damage	5, Replace the inverter module
		5, The inverter module is damaged	
		1, Through the multi-function	1, Reset to factory setting
Err15	External device	terminal DI input external fault	2, Reset to factory setting
	fault	signal	
		2, Through the virtual IO function	
		input external fault signal	
		1, The host computer is not working	1, Check the host computer
		properly	wiring
Err16	Communication	2, The communication line is not	2, Check the communication
/Er.CE	fail	normal	cable
		3, Communication parameters PD	3, Set the communication
		group settings are not correct	parameters correctly
	Contactor failure	1, The driving board and power	1, Replace the drive board or
Err17		supply is not normal	power board
		2, Contactor is not normal	2, Replace the contactor
Err18	Current detection	1, Check the Hall device exception	1, Replace the Hall device
/Er.HAL	failure	2, The driving board exception	2, Replace the driver board

1			
Motor tuning fault		1, The motor parameters are not	Set motor parameters according
Err 19		set by nameplate	to motor nameplate
/Er.TuN		2, Parameter identification process	
		timeout	
		1, The encoder model does not	1, Check the encoder parameters
Err20		match	2, Excluding line wiring failure
/Er.PG	Encoder fault	2, The encoder connection error	3, Replace the encoder
		3, The encoder is damaged	4, Replace the PG card
		4, PG card exception	
Err21	EEPROM failures	1, EEPROM IC broken	1, Replace the control board
/Er.EEP			
	Inverter hardware	1, there is over voltage	1, Troubleshooting as over voltage
Err22	failure	2, there is over current	2, Troubleshooting as over current
Err23	Short to ground	1, Motor to ground short circuit	1, Change motor cable or motor
/Er.SGd			
Err26	The cumulative run	1, The cumulative run time is over	1, Clear the record with
/Er.ort	time arrives	the set the value	parameters initialization
	User Defined Fault	1, User define fault signal 1 with	1, Reset factory setting
Err27	1	multi-function terminals.	2, Reset factory setting
		2, User define fault signal 1 with	
		virtual IO function	
	User Defined Fault	1 , User define fault signal 2 with	1, Reset factory setting
Err28	2	multi-function terminals.	2, Reset factory setting
		2, User define fault signal 2 with	
		virtual IO function	
	The cumulative	1, The cumulative power up is over	1, Clear the record with
Err26	power up time	the set the value	parameters initialization
	arrives		
Err30	Load missing	1,The running current of inverter	Check the load condition
		less than P9-64	
	PID feedback	1, PID feedback value less than	Check the PID feedback signal
Err31	loss	PA-26	or set PA-26 value correct
	Wave by wave	1, The load is too large	1, Check the load
Err40	current limit fault	2, The inverter selection is too	2, Zoom in the inverter power
		small	level;
	Motor switchover	1. Change the current motor	Switch motor in stop mode of
Err41	fault	selection through the terminal	inverter
		during the inverter operation	
	The speed	1, The encoder parameter setting	1, Correct set encoder
Err42	deviation is too	is not correct	parameters
	large	2, No perform motor auto tuning	2, Motor auto tuning
		3, The speed deviation is too	3, Set correct value for P9-69,
		large , P9-69, P9-60 setting is	P9-60 per filed condition
		unreasonable	

SP300 Appendix 1 SP300Instructions for Driving 1 Phase 220V Pumps

P0-01	1st motor control mode	0: VF control 1: Sensorless vector control (SVC) 2: PG sensor vector control (FVC) 3: 2 wires output for single phase pumps 4: 3 Wires output for single phase pumps	0
P0-20	Single - phase motor balance coefficient (Three-phase output)	0.0 - 2.0	1.0

Please select one more rated power class of inverter than the motor or pump.

It is request to set motor group parameters(P1 group) when driving 1 phase motor.

And also can adjust the output torque capacity with P3-01 parameters.

There are 2 driving modes for using inverter to drive 1 phase motor.

1) 2 wire output mode (P0-01 = 3): This mode wiring as below:

SP300

In this control mode, the start capacitor is removed. Connect 1 phase pump to any 2 wires from U-V-W. It can get large adjusting speed range due to starting capacitor have been remove. Through increase the value of P3-01 can increase the start torque and the starting capacity. It is not allow to change running direction in this control mode. Please change the cable wiring to change running direction if need.

2) 3 wires output mode (P0-01 = 4): This mode wiring as below:

In this mode, the starting and running capacitor **must** be remove. Adjusting the P0-20 value can able to change the UV/ WV voltage ratio (the bigger P0-20, the bigger WV, and smaller UV). Because the output voltage phase is difference 90°, so the output voltage can't reaches

 $Udc/\sqrt{2}$, only can reaches Udc/2 (P0-20=1.0).

The load driving capacity is not too strong compare to drive 3 phase AC pumps, and running current will be higher.

Appendix 2 InstructionsSP300 for PMSM pumps

The Procedure of operation for PMSM driving:

1. Set P0-01=1 and P1-00=2 parameters before PMSM running.

2. Set PMSM motor parameters.:P1-01 to P1-05, P1-16 to P1-20.(if the load is difficult to disconnect from motor, please set P1-20 BEF (Back Electromotive Force) accuracy from motor nameplate.

3. Set P1-37 for start auto-tuning.

If the performance is not good, please adjust some related parameter from P2-00 to P2-37.

SP300SP300 has two motor control algorithms for driving permanent magnet synchronous motor, which set by P1-00 and P0-01 both parameters.

	P0-01=0 (VF scalar	P0-01=1 (Sensorless vector
	control)	control)
P1-00=0/1	Asynchronous motor VF	Asynchronous motor vector
(IM)	control	control
P1-00=2	Permanent magnet motor	Permanent Magnet Motor
(PMSM)	scalar V/F control	Vector Control

The vector control is superior to the scalar (V/f) control in terms of motor control performance such as low frequency torque, stability, current waveform and so on. However, the scalar control is not sensitive to the motor back EMF parameter (P1-20). The vector control requires accurate setting or identification of the motor back electromotive force; Both control algorithms need to obtain accurate stator resistance, inductance parameters (P1-16 ~ P1-18); It is recommended sensorless vector control for driving solar PMSM pumps.

SP300

Permanent magnet motor model parameters are as follows: (obtained by parameter identification of motor auto tuning)

	Stator resistance	$0.001\Omega\sim 65.535\Omega$ (Rated power of
11		inverter<=55kW)
F1-10		$0.0001\Omega\sim 6.5535\Omega$ (Rated power of
		inverter>55kW)
P1-17	D-axis inductance	0.01mH~655.35mH(Rated power of
		inverter<=55kW)
P1-18	Q-axis inductance	0.001mH~65.535mH(Rated power of
		inverter>55kW)
P1-20	Back Electromotive	0 1)/ (552 5)/
	Force	0.1 V ~ 0000.0 V

Synchronous motor parameter identification: P1-16 ~ P1-20 motor model parameters can be obtained through parameter identification, the following steps:

If the control algorithm for the scalar control (P0-01 = 0), carry the static auto tuning is okay, do not need to remove the load; vector control need to obtain accurate back EMF parameters, if the application site is not easy to disconnect the load, user can set Back electromotive force by manual.

(Note: When the P1-37 set to 1,2 for the asynchronous motor auto tuning; parameters from the learning, especially dynamic self-learning need to stabilize the power supply, the best use of AC electricity supply. Means we can do motor auto tuning with AC power input first before using in solar system.)

Notes :

Vector control related parameters: it is no need to adjust vector control related parameters in generally. Please see the below list.

P2-00 ~ P2-05 for the speed loop PI parameters, vector control is effective; adjust the PI parameters can get better speed control effect;

P2-13 ~ P2-16 for the axis current loop PI parameters, vector effective; adjust the parameters of the group can improve the stability, current response;

P2-17 ~ P2-18 for the vector control observer (observer) parameters, adjust the observer gain can improve the stability;

P2-21: Start pull into the current size settings, vector / scalar algorithm is valid; increase the pull-in current can improve the low-frequency start torque;

P2-30 ~ P2-34 for the scalar control parameters: P2-30 oscillation suppression used to improve the stability; P2-32 excitation depth for the search to obtain the minimum current;

P2-00	Speed loop proportional gain 1	1~100
P2-01	Speed loop integral time 1	0.01s~10.00s
P2-02	Switching frequency 1	0.00~P2-05
P2-03	Speed loop proportional gain 2	1~100
P2-04	Speed loop integral time 2	0.01s~10.00s
	Switching froquency 2	P2-02~Maximum
FZ-03		frequency
P2-06	Slip compensation coefficient	50%~200%
P2-07	Speed loop filter time constant	0.000s~0.100s
P2-08	Vector control over excitation gain	0~200
P2-10	Current upper limit / torque upper limit	0.0%~200.0%
P2-13	M-axis current loop	0~20000

	proportional gain		
P2-14	M-axis current loop integral	0~20000	
	gain		
P2-15	T-axis current loop	0~20000	
1210	proportional gain	0 20000	
P2-16	T-axis current loop integral	0~20000	
	gain		
P2-17	Observer gain	0.1% - 999.9%	
P2-18	Observe the filter time	0.1 - 100.0ms	
P2-19	AM pre-excitation gain	0 - 9999ms	
		0: direct start;	
P2-20	PM open loop start mode	1: position detection start	
		2: DC pull-in start	
P2-21	Pull in current	0.0% - 200.0%	
P2-22	MTPA gain	0.0% - 999.9%	
P2-23	MTPA filter	1ms - 9999ms	
P2-24	PMSM weak current limit	0.1% - 200.0%	
	PMSM Weak Magnetic		
P2-25	Feedforward Gain	0.1%-999.9%	
P2-26	PMSM weakening ratio gain	0 - 9999	
D0.07	PMSM weak Magnetic	0.0000	
P2-27	Integral Gain	0-9999	
P2-30	Oscillation suppression gain	0.1% - 100.0%	
P2-31	Current loop gain	0.1 - 20.0	
P2-32	Excitation depth	0.1% - 500.0%	
0.00	Excitation control	0 5000	
PZ-33	proportional gain	0 - 5000	
DO 24	Excitation control integral	0 5000	
FZ-34	gain	0 - 5000	
P2-35	DC pull time	0 - 9999	
D2 34	DC pull-in transition	0.0 100.097	
1-2-20	frequency	0.0 - 100.0%	
P2-37	DC pull-in cut-off frequency	0.0 - 100.0%	